Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

5,6-Dioxo-1,10-phenanthrolin-1-ium chloride

Cedric Borel^a and Andrew D. Bond^{b*}

^aChalmers Tekniska Högskola, Department of Chemical and Biological Engineering, 41296 Göteborg, Sweden, and ^bUniversity of Southern Denmark, Department of Physics and Chemistry, Campusvej 55, 5230 Odense, Denmark Correspondence e-mail: adb@chem.sdu.dk

Received 26 July 2007; accepted 21 November 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.033; wR factor = 0.093; data-to-parameter ratio = 9.7.

The title compound, $C_{12}H_7N_2O_2^+ \cdot Cl^-$, is isostructural with its bromide analogue. The compound exhibits a layered structure in which all atoms lie on a crystallographic mirror plane. $N^+ - H \cdots Cl^-$ hydrogen bonds, $C - H \cdots O$ and $C - H \cdots Cl^-$ contacts are formed within each layer. The perpendicular separation between the layers is 3.141 (1) Å.

Related literature

For the isostructural bromide analogue, see: Bomfim *et al.* (2003).

Experimental

Crystal data

 $\begin{array}{l} C_{12}H_7N_2O_2^{+}\cdot Cl^{-}\\ M_r = 246.65\\ \text{Orthorhombic, $Pnma$}\\ a = 14.2870 (11) \text{ Å}\\ b = 6.2833 (5) \text{ Å}\\ c = 12.0019 (10) \text{ Å} \end{array}$

 $V = 1077.40 (15) Å^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.34 \text{ mm}^{-1}$ T = 298 (2) K $0.40 \times 0.07 \times 0.04 \text{ mm}$

Data collection

```
Bruker Nonius X8-APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
T_{min} = 0.744, T_{max} = 0.986
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.033$ H atoms
indepe $wR(F^2) = 0.093$ indepeS = 1.04refinen1028 reflections $\Delta \rho_{max} =$ 106 parameters $\Delta \rho_{min} = -1$ 1 restraint $\Delta \rho_{min} = -1$

4229 measured reflections 1028 independent reflections 758 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.27\ e\ \mathring{A}^{-3}\\ &\Delta\rho_{min}=-0.16\ e\ \mathring{A}^{-3} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots Cl1$	0.88 (1)	2.27 (2)	3.067 (2)	150 (3)
$C1-H1A\cdots O1^{i}$	0.93	2.27	3.074 (3)	145
$C3-H3A\cdots Cl1^{ii}$	0.93	2.87	3.755 (3)	161
C8−H8A···Cl1 ⁱⁱⁱ	0.93	2.91	3.545 (3)	127
C9−H9A···Cl1 ⁱⁱⁱ	0.93	2.93	3.556 (3)	126
$C10-H10A\cdots O2^{iv}$	0.93	2.27	3.196 (3)	177

Symmetry codes: (i) $x - \frac{1}{2}, y, -z + \frac{3}{2}$; (ii) $x + \frac{1}{2}, y, -z + \frac{3}{2}$; (iii) $x + \frac{1}{2}, y, -z + \frac{1}{2}$; (iv) $x - \frac{1}{2}, y, -z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker Nonius, 2004); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was undertaken as part of the Nordic–Baltic Network in Crystal Engineering and Supramolecular Materials, funded by Nordforsk. ADB is grateful to the Danish Natural Science Research Council and the Carlsberg Foundation for provision of the X-ray equipment.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PR2019).

References

- Bomfim, J. A. S., Filgueiras, C. A. L., Howie, R. A. & Wardell, J. L. (2003). Acta Cryst. E59, 0244–0246.
- Bruker (2003). SAINT. Version 7.06a. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker Nonius (2004). *APEX2*. Version 1.0-22. Bruker Nonius BV, Delft, The Netherlands.
- Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.

supplementary materials

Acta Cryst. (2008). E64, o34 [doi:10.1107/S1600536807061788]

5,6-Dioxo-1,10-phenanthrolin-1-ium chloride

C. Borel and A. D. Bond

Comment

The title compound, $C_{12}H_7N_2O_2^+$ ·Cl⁻, was obtained as a by-product from an attempted synthesis of a metal-organic framework (MOF). It is isostructural with its bromide analogue (Bomfim, *et al.*, 2003).

Experimental

5,6-Dioxo-1,10-phenanthroline (40 mg, 0.19 mmol) was dissolved in 10 ml of water at room temperature with stirring and HCl(aq) was added until the pH was 4. When all of the compound had dissolved, $K_3[Mn(CN)_6]$ (31 mg, 0.1 mmol) and NH_4Cl (5 mg, 0.1 mmol) were added and the mixture was left to stand overnight at 277 K, yielding yellow crystals of the title compound.

Refinement

H atoms bound to C atoms were placed geometrically and allowed to ride during refinement with C—H = 0.93 Å and $U_{iso}(H)$ = $1.2U_{eq}(C)$. The H atom bound to N1 was located in a difference Fourier map and refined with an isotropic displacement parameter, with the N—H distance restrained to be 0.87 (1) Å.

Figures

Crystal data

Fig. 1. Molecular structure of the title compound showing displacement ellipsoids at the 50% probability level for non-H atoms. The dashed line denotes the N^+ — H^-Cl^- hydrogen bond.

5,6-Dioxo-1,10-phenanthrolin-1-ium chloride

$C_{12}H_7N_2O_2^+ \cdot Cl^-$
$M_r = 246.65$
Orthorhombic, Pnma
Hall symbol: -P 2ac 2n a = 14.2870 (11) Å

 $F_{000} = 504$ $D_x = 1.521 \text{ Mg m}^{-3}$ Mo K α radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1190 reflections $\theta = 2.9-24.1^{\circ}$

b = 6.2833 (5) Å	$\mu = 0.34 \text{ mm}^{-1}$
c = 12.0019 (10) Å	T = 298 (2) K
$V = 1077.40 (15) \text{ Å}^3$	Needle, yellow
Z = 4	$0.40 \times 0.07 \times 0.04 \text{ mm}$

Data collection

1028 independent reflections
758 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.028$
$\theta_{\text{max}} = 25.1^{\circ}$
$\theta_{\min} = 3.7^{\circ}$
$h = -16 \rightarrow 12$
$k = -7 \rightarrow 4$
$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.033$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.093$	$w = 1/[\sigma^2(F_o^2) + (0.0554P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\rm max} < 0.001$
1028 reflections	$\Delta \rho_{max} = 0.27 \text{ e} \text{ Å}^{-3}$
106 parameters	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$
1 restraint	Extinction correction: none
Determine the first sector of a first sector of the sector	

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.29410 (5)	0.2500	0.51333 (6)	0.0466 (3)
O1	0.82632 (14)	0.2500	0.63231 (19)	0.0638 (7)
O2	0.85156 (15)	0.2500	0.4091 (2)	0.0956 (10)
N1	0.50089 (15)	0.2500	0.58192 (19)	0.0360 (6)
H1	0.4519 (15)	0.2500	0.538 (2)	0.071 (11)*
N2	0.52192 (15)	0.2500	0.36021 (18)	0.0401 (6)
C1	0.4820 (2)	0.2500	0.6909 (2)	0.0447 (7)
H1A	0.4202	0.2500	0.7153	0.054*
C2	0.5539 (2)	0.2500	0.7667 (2)	0.0482 (8)
H2A	0.5413	0.2500	0.8427	0.058*
C3	0.6444 (2)	0.2500	0.7295 (2)	0.0438 (7)
H3A	0.6938	0.2500	0.7799	0.053*
C4	0.66185 (18)	0.2500	0.6159 (2)	0.0376 (7)
C5	0.7592 (2)	0.2500	0.5718 (2)	0.0452 (7)
C6	0.7731 (2)	0.2500	0.4455 (3)	0.0511 (8)
C7	0.68991 (19)	0.2500	0.3738 (2)	0.0399 (7)
C8	0.6968 (2)	0.2500	0.2584 (2)	0.0479 (8)
H8A	0.7553	0.2500	0.2243	0.057*
C9	0.6174 (2)	0.2500	0.1954 (2)	0.0515 (8)
H9A	0.6209	0.2500	0.1180	0.062*
C10	0.5318 (2)	0.2500	0.2487 (2)	0.0481 (8)
H10A	0.4780	0.2500	0.2052	0.058*
C11	0.60042 (18)	0.2500	0.4196 (2)	0.0328 (6)
C12	0.58855 (18)	0.2500	0.5415 (2)	0.0333 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.0402 (5)	0.0572 (5)	0.0423 (5)	0.000	-0.0037 (3)	0.000
01	0.0424 (12)	0.0960 (18)	0.0529 (14)	0.000	-0.0163 (10)	0.000
O2	0.0350 (14)	0.194 (3)	0.0580 (17)	0.000	0.0115 (11)	0.000
N1	0.0338 (14)	0.0369 (12)	0.0372 (15)	0.000	0.0020 (11)	0.000
N2	0.0422 (14)	0.0412 (13)	0.0367 (14)	0.000	-0.0096 (11)	0.000
C1	0.0453 (17)	0.0453 (17)	0.0436 (19)	0.000	0.0167 (14)	0.000
C2	0.060 (2)	0.0528 (18)	0.0314 (17)	0.000	0.0067 (15)	0.000
C3	0.0484 (18)	0.0486 (17)	0.0346 (17)	0.000	-0.0045 (14)	0.000
C4	0.0368 (17)	0.0424 (16)	0.0337 (16)	0.000	-0.0033 (12)	0.000
C5	0.0343 (17)	0.0584 (18)	0.0428 (18)	0.000	-0.0063 (14)	0.000
C6	0.0348 (18)	0.076 (2)	0.0425 (18)	0.000	0.0052 (14)	0.000
C7	0.0392 (17)	0.0458 (17)	0.0348 (16)	0.000	0.0033 (12)	0.000
C8	0.0483 (18)	0.0588 (18)	0.0365 (17)	0.000	0.0096 (14)	0.000
C9	0.066 (2)	0.057 (2)	0.0312 (18)	0.000	-0.0008 (15)	0.000
C10	0.0542 (19)	0.0502 (17)	0.0397 (18)	0.000	-0.0159 (15)	0.000
C11	0.0369 (16)	0.0310 (14)	0.0305 (15)	0.000	0.0011 (12)	0.000

supplementary materials

C12	0.0349 (17)	0.0301 (14)	0.0348 (16)	0.000	0.0016 (12)	0.000
Geometric para	ameters (Å, °)					
O1—C5		1.202 (3)	C4—	C12	1.37	76 (3)
O2—C6		1.203 (3)	C4—	C5	1.48	38 (4)
N1—C1		1.335 (3)	С5—	C6	1.53	30 (4)
N1—C12		1.343 (3)	С6—	C7	1.46	58 (4)
N1—H1		0.88 (1)	С7—	C8	1.38	38 (4)
N2-C11		1.329 (3)	С7—	C11	1.39	92 (4)
N2-C10		1.345 (3)	C8—	С9	1.36	53 (4)
C1—C2		1.373 (4)	C8—	H8A	0.93	30
C1—H1A		0.930	С9—	C10	1.38	31 (4)
C2—C3		1.368 (4)	С9—	H9A	0.93	30
C2—H2A		0.930	C10–	-H10A	0.93	30
C3—C4		1.386 (4)	C11–	C12	1.47	73 (3)
С3—НЗА		0.930				
C1—N1—C12		122.8 (2)	02—	C6—C5	118	.8 (3)
C1—N1—H1		115 (2)	С7—	C6—C5	118	.4 (2)
C12—N1—H1		122 (2)	C8—	C7—C11	117	.4 (3)
C11—N2—C10		116.4 (2)	C8—	С7—С6	121	.8 (3)
N1—C1—C2		119.8 (3)	C11–	-C7-C6	120	.8 (3)
N1-C1-H1A		120.1	С9—	C8—C7	119	.6 (3)
С2—С1—Н1А		120.1	С9—	C8—H8A	120	.2
C3—C2—C1		119.4 (3)	С7—	C8—H8A	120	.2
С3—С2—Н2А		120.3	C8—	C9—C10	118	.7 (3)
C1—C2—H2A		120.3	C8—	С9—Н9А	120	.6
C2—C3—C4		119.4 (3)	C10–	-С9—Н9А	120	.6
С2—С3—Н3А		120.3	N2—	С10—С9	123	.6 (3)
C4—C3—H3A		120.3	N2—	C10—H10A	118	.2
C12—C4—C3		120.1 (2)	С9—	C10—H10A	118	.2
C12—C4—C5		118.8 (3)	N2—	C11—C7	124	.3 (2)
C3—C4—C5		121.1 (2)	N2—	C11—C12	115	.8 (2)
O1—C5—C4		122.1 (3)	С7—	C11—C12	119	.9 (2)
O1—C5—C6		119.7 (3)	N1—	C12—C4	118	.4 (3)
C4—C5—C6		118.3 (2)	N1—	C12—C11	117	.8 (2)
O2—C6—C7		122.8 (3)	C4—	C12—C11	123	.8 (2)
C12—N1—C1-	C2	0.0	С7—	C8—C9—C10	0.0	
N1-C1-C2-	C3	0.0	C11–	-N2-C10-C9	0.0	
C1—C2—C3—	C4	0.0	C8—	C9—C10—N2	0.0	
C2-C3-C4-	C12	0.0	C10–	-N2-C11-C7	0.0	
C2—C3—C4—	C5	180.0	C10–	-N2-C11-C12	180	.0
C12—C4—C5—	-01	180.0	C8—	C7—C11—N2	0.0	
C3—C4—C5—	01	0.0	C6—	C7—C11—N2	180	.0
C12—C4—C5—	-C6	0.0	C8—	C7—C11—C12	180	.0
C3—C4—C5—	C6	180.0	C6—	C7—C11—C12	0.0	
01—C5—C6—	02	0.0	C1—	N1—C12—C4	0.0	
C4—C5—C6—	02	180.0	C1—	N1—C12—C11	180	.0
O1-C5-C6-	C7	180.0	C3—	C4—C12—N1	0.0	

supplementary materials

C4—C5—C6—C7	0.0		C5-C4-C12-N1		180.0
O2—C6—C7—C8	0.0		C3—C4—C12—C11		180.0
C5—C6—C7—C8	180.0		C5-C4-C12-C11		0.0
O2—C6—C7—C11	180.0		N2-C11-C12-N1		0.0
C5—C6—C7—C11	0.0		C7-C11-C12-N1		180.0
C11—C7—C8—C9	0.0		N2-C11-C12-C4		180.0
C6—C7—C8—C9	180.0		C7—C11—C12—C4		0.0
Hydrogen-bond geometry (Å, °)					
D—H···A		<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H1···Cl1		0.88 (1)	2.27 (2)	3.067 (2)	150 (3)
C1—H1A····O1 ⁱ		0.93	2.27	3.074 (3)	145
C3—H3A…Cl1 ⁱⁱ		0.93	2.87	3.755 (3)	161
C8—H8A…Cl1 ⁱⁱⁱ		0.93	2.91	3.545 (3)	127
C9—H9A…Cl1 ⁱⁱⁱ		0.93	2.93	3.556 (3)	126
C10—H10A····O2 ^{iv}		0.93	2.27	3.196 (3)	177

Symmetry codes: (i) x-1/2, y, -z+3/2; (ii) x+1/2, y, -z+3/2; (iii) x+1/2, y, -z+1/2; (iv) x-1/2, y, -z+1/2.

Fig. 1